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ABSTRACT
Natural human-robot interaction requires robots to learn new tasks

autonomously and link the learned actions to their correspond-

ing words through grounding. Previous studies focused only on

action learning or grounding, but not both. In this paper, we try to

fill this gap by introducing a framework that uses reinforcement

learning to learn actions and cross-situational learning to ground

actions, object shapes and colors, and prepositions. The proposed

framework is evaluated through a simulated interaction experiment

between a human tutor and a robot. The results show that the em-

ployed framework can be used for simultaneous action learning

and grounding.

KEYWORDS
reinforcement learning; cross-situational learning, symbol ground-

ing, human-robot interaction simulation

1 INTRODUCTION
The number of service robots, which are employed in complex,

human-centered environments, is growing [10, 12]. To enable them

to efficiently collaborate with humans, they must be able to learn

new actions autonomously and converse in natural language to

understand the corresponding instructions of a user. For the for-

mer, the robot has to learn micro-action patterns, which lead to the

desired changes in the environment, as specified by macro-actions
1
.

For the latter, the robot has to relate words and sensory data that

refer to the same characteristic of an action or object to each other,

which was first described by Harnad [9] as ”Symbol Grounding”.

Although there are many studies in the literature that investigate

action learning or grounding, none of them considers both simulta-

neously. Additionally, action learning studies have been limited to

learn a single action, such as stacking a brick onto another brick,

while only varying the initial position of the gripper, due to their

focus on high-dimensional action and state spaces, introduced by

the use of complex grippers [8, 13]. Furthermore, grounding studies

were mostly conducted offline and primarily focused on grounding

of object characteristics or spatial concepts [2, 6]. Although action

grounding has been considered before, the corresponding studies

represented actions by simple feature vectors, which cannot be

1
Micro-actions can be executed by a reinforcement learner, e.g. move gripper left or
close gripper (Section 3.2), while macro-actions describe the transition from the initial

state to the goal state of a situation and can be referred to by action words, i.e. verbs.

directly translated into motor commands to reproduce the original

action [14, 20].

In this paper, we provide a simulation study that investigates the

possibility of simultaneous action learning and grounding through

the combination of reinforcement and cross-situational learning.

More specifically, we simulate human-robot interactions during

which a human tutor provides instructions and illustrations of the

goal states of the corresponding actions. The robot then learns to

reach the desired goals and grounds the words of the instructions

through obtained percepts. The manipulation tasks, considered in

this study, can be separated into two categories. On the one hand,

tasks that move manipulation objects in regard to their initial posi-

tions and, on the other hand, tasks that move manipulation objects

in regard to the position of a reference object. Additionally, objects

of two diffent shapes are used, which exhibit different behaviour

when manipulated, to investigate the ability of the agent to learn

to execute different micro-action patterns, depending on the shape

of the manipulated object. Furthermore, we investigate grounding

of synonyms, i.e. words that refer to the same percepts, without

using any syntactic or semantic information.

The rest of the paper is structured as follows: The next section,

discusses related work on manipulation action learning as well

as grounding. Section (3) provides an overview of the employed

system. Section (4) describes the achieved results. Finally, Section

(5) concludes the paper.

2 RELATEDWORK
2.1 Action Learning
Object manipulation tasks usually require a series of actions to

change the state or position of a target object [5]. Many studies

have investigated how manipulation actions can be automatically

learned by robots, either through demonstration or reinforcement

learning [1, 8, 13, 18]. For the former, a human tutor has to demon-

strate the desired action to the agent so that a policy can be derived

from the recorded state-action pairs [3]. The latter, on the other

hand, does not require the action to be demonstrated. Instead, it

only requires a description of the goal state and discovers through

trial-and-error possible policies [19]. Abdo et al. [1] proposed a

method that enables robots to learn manipulation actions, such as

placing one object on another, from kinesthetic demonstrations.

Although, only a small number of demonstrations was necessary



to learn the actions, the manipulator had to be directly moved by a

human tutor, which might not be possible in some situations. Popov

et al. [13] and Gudimella et al. [8] focused on learning to stack two

objects onto each other through reinforcement learning, by directly

controlling the joints of a robotic arm and gripper, which led to

high-dimensional action and state spaces. The experiments were

conducted in simulation due to the large number of required envi-

ronment transitions.

The action, i.e. place, in the described studies, always resulted in

the same goal position of the manipulation object with respect

to the reference object. In this study, the goal position of the ob-

ject can vary for the same action because of prepositions, which

specify the exact goal location relative to the initial or a reference

object position, thereby, illustrating the importance of investigating

simultaneous action learning and grounding.

2.2 Grounding
Grounding is about the generation of meaning of an abstract sym-

bol, e.g. a word, by linking it to perceptual information, i.e. the

“real” world [9]. To ground manipulation actions in an unsuper-

vised manner cross-situational learning can be used, which assumes

that one word appears several times together with the same per-

ceptual feature vector so that a corresponding mapping can be

created [7, 16, 17]. Previous studies investigated the use of cross-

situational learning for grounding of objects and actions [6, 20]

as well as spatial concepts [2, 4, 21]. In all studies, grounding was

conducted offline, i.e. perceptual data and words were collected in

advance, which prevents their models from being used in real-time

human-robot interactions. Furthermore, actions were represented

through very simple or even static action feature vectors that can-

not be directly used to execute the actions on a robot. Additionally,

the employed models were not able to handle ambiguous words,

although, the sentences humans produce are often ambiguous due

to homonymy, i.e. one word refers to several objects or actions, and

synonymy, i.e. one object or action can be referred to by several

different words. One recent study showed that grounding of syn-

onyms does not require semantic or syntactic information and that

such information can even have a negative effect, depending on the

characteristics of the used information and how it is applied [14].

Thus, for the online grounding mechanism employed in this study,

no additional semantic or syntactic information is used to ground

synonyms.

3 SYSTEM OVERVIEW
The employed grounding and action learning system consists of

three parts: (1) Experiment simulation, which generates differ-

ent situations to simulate human-robot interactions (2) Reinforce-

ment learning algorithm, which updates Q-tables to produce op-

timal micro-action patterns for encountered situations, (3) Cross-

situational learning component, which maps percepts to words.

The inputs and outputs of the individual parts are highlighted below,

and described in detail in the following subsections.

(1) Experiment simulation:
• Output: Situations, consisting of the initial gripper and

object positions, relative goal positions of the manipu-

lation objects, object colors, object shapes, and natural

language instructions. The goal position of the manipula-

tion object is described with respect to its initial position

or the position of a reference object. The former is used in

situations with one object, while the latter for situations

with two objects.

(2) Reinforcement learning:
• Input: Initial gripper position, initial object positions and
the relative goal position of the manipulation object.

• Output: Q-table, which produces optimal micro-action

patterns for encountered situations.

(3) Cross-situational learning:
• Input: Relative goal positions of the manipulation object,

action feature vectors, object colors, object shapes, and

natural language instructions.

• Output: Word to percept mappings.

3.1 Experiment Simulation
During the experiment, interactions between a human tutor and a

robot, in front of a tabletop, are simulated. In each situation, one

or two objects, which can be of different shapes and colors, are

placed on the table in different spatial configurations. If only one

object is present, the instructions describe how it should be moved,

e.g. forwards or to the left. If two objects are on the tabletop, the

instructions determine where the manipulation object should be

placed in relation to the reference object, e.g. behind or on top of it.

Table (1) provides an overview of all words and phrases used in the

instructions with their corresponding types and percepts. Four of

the five prepositions and the action have two synonymous words,

i.e. two words that refer to the same percept, thereby, allowing to

investigate whether the proposed framework can handle synonyms.

Prepositions are indirectly grounded through Q-tables because they

directly ground relative manipulation object goal positions, which

need to be represented through different Q-tables since one Q-table

can only represent one goal state. Thus, the number of Q-tables is

proportional to the number of prepositions, i.e. when a new prepo-

sition is encountered a new Q-table will be created. Action feature

vectors represent a set of Q-tables, instead of one Q-table, because

the same action word is used for different goal states, i.e. different

prepositions. In this study only one macro-action is used so that

also only one action feature vector exists (AFV:AFV1), which repre-

sents a set of five Q-tables.
2

The experimental procedure, which is simulated in this study,

consists of the following five phases:

(1) One or two objects are placed on a table and the robot deter-

mines the corresponding shapes and colors.

(2) An instruction is given to the robot by the human tutor and

words and phrases are extracted.

(3) The human tutor executes the described action and the robot

records the goal state, which is used to determine the desired

spatial configuration, i.e. the robot does not record how the

action is executed, but only the resulting state.

2
In future work, additional macro-actions, e.g. grab, will be used to investigate ground-
ing of several action feature vectors, i.e. several sets of Q-tables.
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Table 1: Overview of all words and phrases used in the in-
structions with their corresponding types and percepts. In-
structions for situations with one or two objects only differ
in the used prepositions, while all other words are used in
both cases.

Type Words/Phrases Percept
1 Object 2 Objects

Shape

cube 0

ball 1

Color

red COLOR:red
green COLOR:green
blue COLOR:blue
black COLOR:black

Preposition

to the left to the left of [−1, 0, 0]

to the right to the right of [1, 0, 0]

backwards in front of [0, 1, 0

forwards behind [0,−1, 0

- on top of [0, 0, 1]

Action

move

AFV:AFV1
place

Article the -

(4) The agent learns how to reach the goal state using reinforce-

ment learning, thereby obtaining a corresponding micro-

action pattern.

(5) Words are grounded through the obtained percepts.

In the employed simulation, the first three steps of the described

experimental procedure are done simultaneously through the ran-

dom generation of situations, consisting of the initial positions of

the gripper and objects, the relative goal position of the manip-

ulation object, object colors and shapes, and a natural language

instruction, which describes how the manipulation object should be

moved. Several constraints have been implemented to ensure that

the generated situations are possible in the real world, e.g. two ob-

jects can’t be at the same position. The environment is represented

by a 7 × 5 × 2 array so that positions are given as coordinates, i.e.

[x ,y, z]. If the gripper or an object is moved outside of the environ-

ment, a negative reward of -1 will be given and the corresponding

episode will be terminated. The initial and goal positions are used

to calculate the preposition percept, i.e. the relative manipulation

object goal position, if only one object is present, otherwise, the

goal positions of the manipulation and reference objects are used.

The preposition percept only describes the direction, but not the

distance, i.e. whether an object is one or two positions to the left.

Object colors are words, e.g. COLOR:red and object shapes are num-

bers, e.g. 1 represents a ball.3

Instructions are randomly created by combining different words

according to two possible structures, which are illustrated in Table

(2). Examples for the first and second sentence structures are move

3
In future work, a real robot and all five phases of the described experimental procedure

will be employed. In that case, colors will be represented by RGB values and the shapes

will be represented through Viewpoint Feature Histogram (VFH) [15] descriptors,

which represent the object geometry taking into account the viewpoint and ignoring

scale variance.

Table 2: Illustration of the two possible sentence structures,
which are used depending on the number of objects, i.e.
whether a reference object exists.

Position Word/Phrase Type
1 Object 2 Objects

1 Action

2 Article

3 Manipulation Object Color

4 Manipulation Object Shape

5 Preposition

6 - Article

7 - Reference Object Color

8 - Reference Object Shape

the red cube forwards and place the blue ball to the right of the black
cube. The instructions are then separated into words and phrases

using a predefined dictionary.
4

3.2 Reinforcement Learning
Reinforcement learning allows an agent to learn through rewards

and punishments obtained during the interaction with the envi-

ronment [19]. The learning is expressed through a proper reward

function, indicating the goal to the agent. In this study, the goal state

is calculated via the preposition percept. This calculation needs to

be done every episode because the reference object can be moved,

which changes the goal position for the manpulation object. If the

initial state is identical to the goal state, which can occur because

the situations are generated randomly (Section 3.1), no learning

takes place and the agent will continue with grounding. For each of

the five possible preposition percepts (Table 1) a different Q-table

is used. Q-tables are initialized with zeros and used in all situa-

tions with the given preposition percept. The number of episodes

is dynamic to ensure that the agent obtains the optimal policy, in-

dependent of the difficulty of the current situation, which depends

on the goal state and initial state. The dynamicity is achieved by

executing Q-learning until the number of steps, required to reach

the goal state, has not changed for 100 episodes because, in that

case, it can be assumed that the optimal policy has been learnt
5
.

Episodes are terminated when a terminal state is reached, i.e. the

manipulation object is moved to its goal position or the gripper or

one of the objects is moved out of the environment.

The observation vector provided to the agent contains the following

information: (1) the shape of the manipulation object, (2) the gripper

position relative to the manipulation object position, (3) the current

manipulation object position relative to the initial manipulation

object position or current reference object position, depending on

whether one or two objects are present, and (4) gripper state, i.e.

{open, closed}. Since the relative positions are used, the learned

Q-table is applicable independent of the absolute object or gripper

positions.

4
In future work, words and phrases will be automatically identified in an unsupervised

manner.

5
The used critera worked for the considered situations, however, it is not optimal and

might therefore be changed in the future.
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The agent can execute eight different actions, which are opening or

closing the gripper, moving the gripper forwards, backwards, left,

or right, and lowering or raising the gripper. Physical interactions,

e.g. when the gripper is moved to a position that is occupied by an

object, are realistically simulated. This includes different behaviours

for cubes and balls when pushed because balls will start to roll and

will therefore move further than cubes. Thus, in the simulation,

cubes are moved by one position and balls by two positions, unless

an object occupies the second position, in which case the ball will

also only be moved one position. Additionally, if the first position,

to which the object is moved, is occupied by another object, both

are moved.

For exploration ϵ-greedy is used as described by Sutton and Barto

[19]. The exploration rate is decreased every episode, but reset for

each new situation. Thus, even when the Q-table has been trained

for many situations, the agent still explores many times during the

first episodes of a new situation, even if a situation with the same

characteristics had already been encountered before.

When the manipulation object is placed on its goal position the

agent will receive a positive reward of 1. If the gripper or one of the

objects is moved outside of the environment a negative reward of -1

is given. For each step a negative reward of -0.2 is given to encour-

age the agent to reach the goal state with the minimum number of

steps possible. Additionally, potential-based reward shaping is used

to reduce the number of suboptimal actions made and therefore

the time required to learn [11]. The used Q-learning algorithm is

represented by the following formula:

Q (s,a) ← Q (s,a) + α[r + F (s, s ′) + γ max

a′
Q (s ′,a′) −Q (s,a)] (1)

where a and a′ are the actions taken in states s and s ′, respec-
tively. α and γ represent the learning rate and discount factor,

which are set to a value of 0.8 and 0.95, respectively. F (s, s ′) is the
potential-based reward, defined as the difference of the potential

function ϕ over a source s and destination state s ′:

F (s, s ′) = γ ∗ ϕ (s ′) − ϕ (s ) (2)

For this study the potential function ϕ is defined as follows:

ϕ (s ′) =
1

∥дp (s ′) −mop (s ′)∥1 + ∥mop (s ′) −mop (д)∥1 + 1
(3)

ϕ (s ) =
1

∥дp (s ) −mop (s )∥1 + ∥mop (s ) −mop (д)∥1 + 1
(4)

where дp andmop are the positions of the gripper and manipu-

lation object, respectively, while s and s ′ represent the source and
destination state of the current action, and д represents the goal

state.

3.3 Cross-Situational Learning
Cross-situational learning is used for grounding by creating map-

pings between words and percepts that occur most of the time

together. Initially the set of grounded words Gw and perceptsGp
is empty. After the successful execution of an action, the agent has

the following perceptual information.

Algorithm 1 Grounding of words.

1: procedure Grounding
2: Create Sw,p , Sp,w
3: for j = 1 toword_number do
4: Save highest Pw,p to Gw
5: end for
6: for j = 1 to percept_number do
7: Save highest Pp,w to Gp
8: end for
9: return Gw ∪Gp
10: end procedure

• Color of manipulation object.

• Shape of manipulation object.

• Relative position of manipulation object to its initial posi-

tion or the position of a reference object, depending on the

number of objects in the situation
6
.

• Color of reference object, if a reference object is present.

• Shape of reference object, if a reference object is present.

• Action feature vector.

These perceptual information are then used together with the

perceptual information of all previous situations to ground the

words of all encountered instructions.
7
. Before the actual ground-

ing procedure, all auxiliary words are discarded by checking a

predefined dictionary.
8
Afterwords, a set of percepts Sw,p is cre-

ated for each word, in which each percept is saved with a number

that indicates how often it occured together with that word. The

same is also done for percepts, i.e. for each percept a set of words

Sp,w is created. Then, the highest word-percept pair Pw,p is de-

termined and saved to the set of grounded words Gw . Since w is

already grounded, all pairs it is part of will not be considered for the

selection of the next highest word-percept pair, during the next it-

eration. Additionally, the percept that was used to ground the word

will not be available to ground any other words. These restrictions

are applied until all percepts have been used for grounding once.

If there are still ungrounded words left, all percepts will become

again available for grounding, until all words have been grounded.

This last step is necessary to ground synonyms. After all words

have been grounded the same process is repeated for percept-word

pairs Pp,w . This is necessary to assign synonymous percepts to the

same word.
9
Finally, the sets of grounded words and percepts are

merged. Thus, all words are mapped to all corresponding percepts.

Algorithm (1) summarizes the grounding procedure.

6
The relative position of the manipulation object is calculated by substracting the

coordinates of the intial manipulation object position or reference object position

from the current manipulation object position. For example, if the manipulation and

reference object positions are (1, 2, 0) and (2, 2, 0), respectively, the spatial relation is

(1 − 2, 2 − 2, 0 − 0) = (−1, 0, 0).
7
An overview of possible instructions is provided in Section (3.1).

8
The used instructions only contain one auxiliary word, i.e. a word that has no corre-

sponding percept, the article the. Since no syntactic or semantic information is used

for grounding, the auxiliary word was automatically removed from the set of words

given to the cross-situational learner. However, in future work, we will investigate to

create the dictionary automatically in an unsupervised manner.

9
None of the used situations contains synonymous percepts. However, they might be

introduced in future work.
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Figure 1: Number of required episodes until the reinforce-
ment learning algorithm converges to the optimal policy for
fixed initial positions (Scenario 1). The blue curve shows the
original values, while the red curve shows the average.

4 RESULTS AND DISCUSSION
In several previous studies, reinforcement learning and cross-situational

learning have been used for action learning and grounding, respec-

tively [14, 18]. However, to the best of our knowledge, there has

not been any study investigating simultaneous action learning and

grounding. Two different scenarios are investigated. In the first

scenario, each of the 704 unique instructions is used once, i.e. the

number of situations is also limited to 704, and the initial gripper

and object positions are always the same. The gripper is always

placed in the middle of the environment, while the manipulation

object is placed one position to the left of the gripper and the ref-

erence object, if present, is placed one position to the right of the

gripper. For the second scenario, the initial positions are generated

randomly, with the only constraint that they must be valid, e.g.

two objects cannot be on the same position. In the second scenario,

100,000 different situations are generated. The following sections

describe the results for the reinforcement learning as well as the

cross-situational learning components for both scenarios.

4.1 Reinforcement Learning
For the first 50 situations in the first scenario, the reinforcement

learner required, several times, more than 100 episodes until it

converged to the optimal policy, as shown in Figure (1). Afterwards,

it required on average less than 30 episodes to converge. In the

second scenario, it took about 4,000 situations until it converged on

average after 34 episodes to the optimal policy. At the beginning,

during the first 1,000 situations, it sometimes took several hundreds

up to 1,000 episodes to converge (Figures 2 and 3).

Due to the different intial positions, in the second scenario, it took

longer until the number of required episodes converged to the same

number as in the first scenario. That the agent did not execute the

optimal policy immediately, is due to the high exploration rate at

the beginning, which is always reset for each new or even already

encountered situation. If the exploration rate is set to zero after a

certain number of situations, the agent will execute the optimal

policy in the first episode, however, if the situation has not been

ecountered before, the agent will never reach the goal state.

Figure 2: Number of required episodes until the reinforce-
ment learning algorithm converges to the optimal policy for
random initial positions (Scenario 2). The blue curve shows
the original values, while the red curve shows the average.

Figure 3: Average number of required episodes until the rein-
forcement learning algorithm converges to the optimal pol-
icy for random initial positions (Scenario 2).

4.2 Cross-Situational Learning
In the first scenario, more than 80% of the obtained groundings

are false during the first situations (Figure 4). However, the per-

formance improves quickly so that after only 3 situations 56% of

the mappings are correct. After 14 situations the number of false

mappings decreases to one, while the number of correct mappings

still increases afterwards because of new words in subsequent situ-

ations, which have not been encountered before. Although, after

40 situations all words have been used in one or more situations,

it takes 100 more situations until the last false mapping becomes

correct.

For the second scenario, Figure (5) shows that more than 60% of the

words are correctly grounded after 4 situations. Afterwards, the

number of correct groundings increases quickly to more than 90%

after 8 situations. This is followed by an increase in false ground-

ings, due to the introduction of three new words. While two of the

new words are grounded correctly after 30 more situations, it takes

more than 1,900 situations until the last word is correctly grounded.

Overall, the results show that the employed grounding mechanism

can successfully ground all words and handle synonyms. However,

only a small number of words was used in this study. Thus, it is not

5



Figure 4: Cross-situational learning results for fixed initial
positions. The number of correct and false mappings is
shown in blue and red, respectively.

Figure 5: Cross-situational learning results for random ini-
tial positions. The number of correct and false mappings is
shown in blue and red, respectively.

clear whether it would be able to handle a larger set of words since

each word would be encountered fewer times. Additionally, the

current grounding procedure cannot handle auxiliary words so that

they need to be removed beforehand. This is not necessarily a prob-

lem, however, at the moment, the employed removal mechanism

relies on a manually created dictionary.

5 CONCLUSIONS AND FUTUREWORK
We investigated a multimodal framework for simultaneous action

learning and grounding of objects and actions. Our framework was

set up to learn the meaning of object, action, color, and preposition

words using object shapes and colors, learnedmicro-action patterns,

and relative object positions.

The proposed framework allowed the learning of actions as well as

the grounding of words, including synonyms, during a simulated

human-robot interaction. However, it relies on a manually defined

dictionary to identify auxiliary words and phrases. Additionally,

only a small number of words has been used and the used percepts

have all been represented through simple words and numbers,

which is different from real sensor data.

In future work, we will use a stereo camera to obtain the shapes,

colors, and positions of objects and a robot to execute learned

actions. However, action learning will still be done in simulation, to

speed up learning and avoid situations inwhich human intervention

is necessary. Furthermore, we will consider automatic identification

of phrases and auxiliary words. Finally, we will investigate whether

the grounding mechanism works for a larger number of words.
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