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Abstract Conversational dialog technology is increasingly being recognized as a
useful means of automating remote patient monitoring and diagnostics for dysarthric
speakers at scale. However, the characteristics of dysarthric speech introduce mul-
tiple challenges for various speech processing components of such systems. This
paper specifically focuses on the voice activity detection (VAD) component of such
a cloud-based multimodal dialog agent for monitoring patients with Amyotrophic
Lateral Sclerosis (ALS). We describe our baseline VAD setup and configurable pa-
rameters, and analyze its online performance vis-a-vis human gold annotations on
dialogs collected from ALS patients. We further inspect the differences in system
performance between patients and healthy controls for multiple speech tasks to bet-
ter understand the constraints of the system. Using simulation experiments, we find
optimal parameter settings that minimize the VAD NIST detection cost function
(DCF), thereby improving system performance and user experience.

1 Introduction

Mobile health and telemedicine can provide substantial benefit for the diagnosis,
detection, and monitoring of neurological and mental health conditions [13]. In-
deed, the COVID-19 pandemic has underscored the importance of telemedicine and
remote patient monitoring in providing care for patients with chronic neurologi-
cal disorders [1]. A spoken or multimodal dialog system is one such mobile health
technology that offers the potential to improve availability, frequency, and quality of
care. This technology can be used to conduct automated screening interviews that
previously required face-to-face sessions with a clinician [6, 15, 20]. As most dia-
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log systems have been developed for non-disordered adult speech, their performance
can decrease substantially when confronted with dysarthric speech, a symptom of
many neurological diseases such as Parkinson’s, Alzheimer’s, multiple sclerosis,
or Amyotrophic Lateral Sclerosis (ALS) [21]. One component that is particularly
crucial for seamless dialog interaction is voice activity detection (VAD); however,
the special characteristics of dysarthic speech, like poor articulation, disfluencies,
extended intra-word pause lengths, atypical acoustic properties, etc., make VAD a
much more challenging problem than when applied to healthy speech [10, 12]. This
paper investigates VAD performance in a cloud-based dialog agent for monitoring
dysarthric patients with ALS versus healthy participants, and presents methods for
tuning VAD parameters for an optimal user experience across different cohorts and
speaking task types. While there has been much work on automatic speech recog-
nition for dysarthric speakers [4, 2, 11, 18, 9], there has been no comprehensive
analysis of voice activity detection in the specific context of multimodal dialog ap-
plications for dysarthria in people with ALS (pALS), to our knowledge.

2 Dysarthric Speech in ALS

pALS exhibit a characteristic hoarseness in their voice due to a variety of possi-
ble reasons. These include irregular contraction of intrinsic and extrinsic laryngeal
muscles, poor laryngeal adduction due to tremor of the arytenoids, sialorrhea and
retention of saliva, uncoupling of the larynx and supralaryngeal vocal tract, and
fluctuation in subglottal pressure due to impaired control of laryngeal and respi-
ratory muscles [17]. Spectral acoustic features of dysarthric speech in ALS are
atypical in that impaired fundamental frequency range and vowel-specific intelli-
gibility patterns due to high F1 formant frequency values and reduced F2 formant
frequency values are observed [14]. Additionally, changes in temporal features of
speech such as longer and more variable pause durations are also observed in pALS
[8]. While such distinct characteristics of dysarthric speech render corresponding
voice biomarkers extremely valuable in tracking the onset and progression of ALS
[7, 16, 19], these atypical duration, speed, and spectral characteristics relative to
healthy controls pose challenges to VAD for smooth user experience.

3 Voice activity detection in NEMSI

We use NEMSI (NEurological and Mental health Screening Instrument)—a cloud-
based multimodal dialog system that conducts on-demand automated screening in-
terviews for the assessment or monitoring of various neurological and mental health
conditions—for the VAD experiments described in this paper [20]. Dialog turn man-
agement in NEMSI is managed in part by voice activity detection (VAD) using the
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CMU Sphinx open source speech recognition toolkit.1 The algorithm uses a two-
step process to identify spans of speech and non-speech in a stream of audio.

As each frame of audio is processed, a speech classifier makes a binary decision
on whether or not it represents speech. The energy of a particular frame is calcu-
lated as the logarithm of the root mean square of the energy of the given samples
within that frame. If this value is less than a minimum threshold, it is marked as
non-speech. The algorithm employs a continuous re-estimation of background en-
ergy (i.e., noise) in the following manner. Starting from a high initial value, the
background energy of each frame is reset to the energy value of the current frame
if it is less than the current value. If not, the background energy estimation is raised
by a small amount proportional to the difference between the current average and
background energy values. The algorithm also employs a continuous re-estimation
of average signal level. If the average signal level is greater than the background
noise level by a certain amount, the current audio is marked as speech; otherwise, it
is marked as non-speech.

Once the speech classifier has made its decision, the frame classifications are
sent to a second algorithm. The speech marker notes the span length of contiguous
speech or non-speech frames. Once it sees a number of contiguous speech frames of
a certain length, it considers a speech turn to have started. Once in a speech turn, the
speech marker looks for a long enough contiguous sequence of non-speech frames
to decide that the participant has finished their turn.

In sum, there are five VAD parameters whose values can be configured to opti-
mize performance. These are: (i) minSignal, the minimum required energy level
(dB) for a speech frame; (ii) adjustment, the factor by which the background level
estimation is increased with each successful speech frame; (iii) threshold, the en-
ergy level of the required difference between the background noise and average
signal level estimations (dB); (iv) startSpeech, time in milliseconds required to
trigger the start of a speech event, and (v) endSilence, time in milliseconds re-
quired to designate the end of a speech turn.

4 Data

The dataset analyzed in this paper came from 135 participants in an ongoing project
involving patients with Amyotrophic Lateral Sclerosis (ALS) and healthy controls
in collaboration with EverythingALS and the Peter Cohen Foundation.2 17 of the
135 users participated in two sessions each, bringing the total number of sessions to
152.3 All sessions were completed between 2020-09-24 and 2021-02-22.

1 https://cmusphinx.github.io/
2 https://www.everythingals.org/research
3 Demographic data was available for 131/135 users. Of these, 91 were female and 40 were male.
The age range was 18-76 years and the mean age was 49.85 ±17.43 years. 50 users were diagnosed
with ALS, 8 users were diagnosed with Primary Lateral Sclerosis (PLS) or another motor neuron

https://www.everythingals.org/research
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Task Prompt Text

OQ Have you had any challenges when speaking, salivating, or swallowing?
If so, please briefly describe any difficulties.

A Please take a deep breath and then say “aaa” until you run out of breath.

DDK Please take a deep breath and say “pataka” over and over until you run out of breath.

SIT Now I’m going to read several sentences to you and I want you to repeat them.
Please say, ”The job provides many benefits.”
[Repeated 5 more times with different sentences.]

R Please read the text aloud to me, to the best of your ability.
Try to read at your normal pitch and loudness. Begin whenever you are ready.
[Participant shown text of passage about bamboo.]

S Please describe what you see happening in this picture.
Please try to speak for at least one minute. Go ahead.

Table 1: Exemplar prompt excerpts from our ALS study protocol that we use to
elicit speech (and corresponding facial movements) from participants for different
task types during the course of an interactive dialog.

Each session began with a microphone check for speech and noise. The users then
took part in a conversation-based call flow where they produced speech in response
to prompts during the following tasks: (a) an open-ended question about difficulty
in speaking, salivating, swallowing (OQ); (b) sustained vowel phonation of /A/ (A);
(c) Oral Diadochokinesis Alternating Motion Rate (DDK AMR) or repetition of
the syllables /pAtAkA/ (DDK); (d) Speech Intelligibility Test sentences (SIT); (e)
read speech of passage about bamboo [22] (R); and (f) spontaneous speech while
describing a picture (S). Table 1 shows the prompts associated with each speaking
task, in the order they are presented in the dialog.

At the end of active speech production tasks, users filled out a questionnaire for
the Amyotrophic Lateral Sclerosis Functional Rating Scale - Revised (ALSFRS-R),
a validated rating instrument to monitor the progression of ALS [5]. The question-
naire consists of 12 questions in total with a maximum possible ALSFRS-R score
of 48. Based on answers to groupings of questions, three sub-scores can be calcu-
lated for different domains affected by the disease: bulbar, limb, or respiratory. For
this investigation, we were particularly interested in bulbar involvement, which in-
dicates speech impairment. Bulbar sub-score ranges from 0 to 12. We stratified the
152 sessions into three separate cohorts based on the following: (a) control: healthy
controls with ALSFRS-R score = 48; (b) bulbar: diagnosed with ALS/PLS and bul-
bar sub-score < 12; (c) other: diagnosed with ALS/PLS and ALSFRS-R score < 48
and bulbar sub-score = 12. In all, 47 sessions were classified into the bulbar, 82 into
the control, and 23 into the other cohort.

disease, 73 users did not have ALS, and diagnosis information for 4 users was unavailable at the
time of writing.
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Fig. 1: Segmentation of hypothetical speech and VAD output of the same audio
stream. The third tier shows the four possible outcomes used for scoring.

5 Methods

5.1 NIST Detection Cost Function

We employed the standard NIST Detection Cost Function (DCF) [3] to measure
how well the CMU Sphinx VAD predictions were, given a set of values for the con-
figurable parameters described in section 3. The DCF score is a weighted penalty of
the proportion of false positive and false negative time, when compared to a hand
annotation of actual speech in an audio stream. Since ignoring true speech is usually
most detrimental to a spoken dialog system, DCF traditionally penalizes false nega-
tives more than false positives. Refer to Figure 1 for a visual aid in our discussion of
the four possible outcomes of a VAD prediction when compared to a reference hand
annotation. True negative time (T N) is the time when the VAD algorithm predicted
no speech and the user was not speaking. True positive time (T P) is the time when
the VAD algorithm predicted speech and the user was speaking. False negative time
(FN) is the time when the VAD algorithm predicted no speech but the user was
speaking. False positive time (FP) is the time when the VAD algorithm predicted
speech but the user was not speaking. Additionally, the calculation of DCF takes
into account a “collar” of time both preceding and following the user speech which
is not factored into the false negative or false positive times. This is an acknowledge-
ment of the fact that perfect VAD prediction is unlikely. We used a collar length of
1.0 second. We then compute the DCF as follows:

PFP =
total FP time

annotated total non-speech time

PFN =
total FN time

annotated total speech time

DCF = 0.75×PFN +0.25×PFP
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Fig. 2: An example VAD annotation of participant speech in an exercpt of a NEMSI
dialog. Ch 1 is the audio channel for NEMSI prompts. Ch 2 is the audio channel for
user speech. OQ, A, SIT, and R represent task type.

5.2 VAD Annotation Procedure

We annotated our corpus in a way that allowed us to compute the DCF score for
each turn in a NEMSI dialog both in production and in offline simulation experi-
ments. Figure 2 shows an excerpt of a dialog with annotation. The topmost audio
channel (Ch 1) is NEMSI’s audio stream and Ch 2 is the participant’s. The first
annotation tier (User Turn) marks the speech (in blue) that comprises the partici-
pant task response. The last annotation tier (Task) shows the task type for this turn,
marked from the end of the previous NEMSI prompt up to the beginning of the next
prompt. The annotation tier in between those two (VAD) shows the region in the
participant speech channel that was detected as a participant turn. In this example,
the user speech in the OQ task was correctly detected by VAD. All of the user speech
turn is considered true positive (TP) time. The remaining three tasks show VAD er-
rors. In the A task the user was interrupted by NEMSI. Since we are collecting data
from a deployed dialog system, we are unsure how long the participant would have
continued to speak had they not been interrupted, but the portion of time in which
both NEMSI and the user are speaking simultaneously is annotated as false nega-
tive (FN) time. In the SIT task, the reader will notice that only the first part of the
participant response has been annotated as the user speech turn. This is a situation
that can arise from VAD settings that are too sensitive to background noise. In this
case, it was clear from listening to the dialog that the participant repeated their turn
after a significant pause because the VAD did not end in a reasonable amount of
time, indicating to the participant that they were not heard. This repeated speech is
annotated as false positive (FP) time and it is important to do so because an opti-
mal VAD configuration setting must produce the end of the turn before the repeated
speech to be correct. Note that while the repeated speech would most likely also be
treated as its own VAD event, we use only the end of the first detected VAD event
to signal the end of a participant turn in the dialog system. In the last task (R) the
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participant did not say anything at all; the VAD incorrectly accepted background
noise as participant speech.

In addition to the above annotation paradigm, we also hand-annotated the turn-
internal speech and silence events within each participant turn. A speech event com-
prises each sub-turn speech event without any internal silences. A silence event was
considered to be any region of non-speech longer that 35 ms that occurred between
the first and last speech events of a participant’s turn.

5.3 Simulation Experiments

We ran offline simulated VAD experiments on annotated participant sessions with
the aim of discovering the optimal configuration settings for the most accurate spo-
ken turn detection. We chose a parameter space that amounted to 45,000 different
VAD configurations (the bounds of this space were chosen empirically based on val-
ues that yielded successful past VAD performance). For each offline simulation run,
we chose a specific value set for the five configurable CMU Sphinx VAD parame-
ters described in section 3. We then split the session into user turns using the interval
points in the Turn annotation tier. We sent each turn through the VAD algorithm in
order to obtain the VAD start and end time, if any. If more than one VAD event was
detected, we only considered the first one since this event would end the turn in a
deployed dialog system. We then computed DCF scores for each of these simulated
runs and observed VAD configuration parameter values that optimized DCF.

6 Analyses and Observations

6.1 Analysis of Annotated Internal Silence and Speech Events

Over the entire corpus, we observed that the bulbar cohort participants produced
more silences of 400ms or longer than the control cohort, in line with our expec-
tations. Figure 3a shows normalized histograms of silence durations for the control
and bulbar cohorts across different speaking task types. The SIT, R, and S tasks
show the same overall trend of the bulbar cohort producing silences of longer dura-
tions; the SIT task shows the most extreme case of this. For the A task, there were
not many silences to speak of for either cohort. This is expected since participants
were asked to sustain a single vowel for as long as possible in a single breath. For
the OQ task, the bulbar cohort produced more silences over all, both short and long
ones.

Figure 3b correspondingly shows histograms for speech events for each speak-
ing task. In both the A and DDK tasks—in which participants are asked to produce
each speech event for as long as possible—we see that the control cohort tended to
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(a) Silence events. (b) Speech events.

Fig. 3: Normalized histograms of hand-annotated internal silence/speech events per
cohort per task. Each bin is 50 ms in duration.

produce longer speech events than the bulbar cohort, though both cohorts showed
a wide range of speech event durations. For the OQ task, the bulbar cohort pro-
duced more speech events of variable length; the control cohort almost exclusively
produced speech events between 250 and 600 ms in length. Since this task is an
open-ended question asking whether the participant has had trouble speaking or not
(and if so, how), this is most likely due to the fact that most control subjects simply
answered, “no.” We see the length of speech events in both the R and S tasks to
be comparable among cohorts, even though Figure 3a shows that the bulbar cohort
tended to produce longer pauses between speech events. The SIT task stands out
in that a larger percentage of speech events were produced at a length of between
500 - 1500 ms for the bulbar cohort, whereas speech events tended to be of longer
duration for control subjects.

6.2 Analysis of Speaker Loudness

Figure 4 plots histograms of loudness recorded during the microphone check while
the participant is silent and when they are speaking for 134 sessions for which we
have microphone information. Notice the high variability of background noise and
speech loudness that could be both due to speaker pathology as well as the variability
in speaker devices and environment that is required to facilitate large-scale, cost-
efficient user access to such dialog technology. This variability poses challenges for
energy-based VAD systems that we will need to consider during parameter tuning
in optimizing for performance.
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(a) Microphone loudness while participant is
silent.

(b) Microphone loudness while participant
is speaking.

Fig. 4: Normalized histograms of loudness during microphone check under two
conditions for the bulbar and control cohorts.

6.3 DCF Optimization

In this section we present results of exhaustive offline VAD simulations, examining
the results when optimizing by both cohort and task type. This experimental de-
sign was motivated by an initial pilot study applying this approach in our deployed
NEMSI system. Our initial VAD settings were chosen by altering default values via
ad hoc quality assurance testing in-house. We collected 91 sessions (1,047 turns)
produced with these settings and annotated the VAD performance according to Sec-
tion 5.2. We observed the DCF to be 0.048 and interruption rate (IR) to be 0.074.
Interruption rate is measured as the number of turns in which the NEMSI system
prematurely detected the end of user speech, divided by the total number of user
turns. Though DCF does not explicitly optimize for IR, these turns do contribute to
false negative time in the function. We include IR here and below because it is of
interest to most dialog system developers. Using these initial 91 sessions, we ran a
few hundred offline simulations with different VAD configuration parameter values
and released a new version of NEMSI into production with the values that produced
the lowest DCF. We then collected and annotated 104 sessions (1,188 turns) and
computed DCF and IR on this new data. Seeing that this lowered DCF to 0.021 and
IR to 0.012, we felt justified in running more ambitious simulation experiments.

6.3.1 Optimization Per Participant Cohort

This section explores how to find optimal VAD parameter settings for different par-
ticipant cohorts, particularly bulbar pALS vs healthy controls, in our dataset. This
dataset comprises 906 dialog turns of controls and 518 of the bulbar cohort. We
found the DCF scores of the cohorts to be 0.106 for control and 0.111 for bulbar
using our initial VAD settings. The corresponding interruption rate was 0.107 for
the control cohort and 0.143 for bulbar. These metrics are plotted as circles in Fig-
ure 5 and serve as our baseline performance. We next explored how DCF and IR



10 Liscombe et al.

Fig. 5: DCF and IR of the ALSFRS-R control and bulbar cohorts under three differ-
ent conditions: using VAD configuration settings prior to tuning (circles), using con-
figuration settings after optimizing for lowest DCF over the entire corpus (squares),
and using different configuration settings optimized for each cohort (plusses).

would look per cohort after running 45,000 brute force simulations, optimizing for
DCF over all three cohorts combined. As plotted with squares in figure 5, the val-
ues were reduced to DCF=0.041, IR=0.018 for control and DCF=0.050, IR=0.056
for bulbar. Finally, we wanted to see if each cohort could be optimized separately
for even better VAD performance. From the same set of simulations we selected
the configuration with the lowest DCF value per cohort. We found that DCF could
be further reduced by doing so, as shown by the plusses in figure 5. However, IR
was only reduced for the bulbar cohort and in fact slightly increased for the control
cohort: DCF=0.041, IR=0.027 for control and DCF=0.042, IR=0.035 for bulbar.

The optimal endSilence value found for the bulbar cohort was observed to be
2500 ms, whereas for the control cohort it was found to be shorter at 2200 ms. This
corroborates the general finding of the hand-annotated internal silence events (see
Figure 3a) in that the bulbar cohort tended to produce longer internal silences. An
optimal VAD configuration for this cohort should be one that waits longer than for
control subjects to make sure the participant has finished speaking before terminat-
ing the VAD event.

6.3.2 Optimization Per Speaking Task Type

In addition to partitioning the data by cohort, we also observed the effect on perfor-
mance metrics when partitioning by task type. Figures 6a and 6b show DCF and IR
by task for all cohorts combined (ALL) as well as by task within the control and bul-
bar cohorts separately. Figure 6a lists task performance using the parameter values
optimized per cohort. The results shown in figure 6b were obtained when applying
different optimal VAD configuration settings per task and cohort. When configuring
VAD per task and cohort type in this way, we observed a reduction in DCF in all
cases and a reduction in IR in almost all cases.

Table 2 shows the optimal endSilence and startSpeech values per task type
and cohort. For every task except A, we see that the optimal endSilence value was
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(a) Optimized per cohort. (b) Optimized per cohort and task.

Fig. 6: DCF and IR per task type when using optimal VAD configuration values (a)
per cohort or (b) both per cohort and task. Task performance is shown for the bulbar
and control cohorts as well as all cohorts combined (including the other cohort.)

longer for the bulbar cohort. In some cases, this difference is up to one second or
more. Furthermore, the values differ in magnitude per task for both cohorts. The
optimal time to wait before triggering the end of a turn for the S task is between
2200 - 2500 ms whereas it is between 1000 and 2000 ms for the SIT task. These
differences are most likely attributable to the cognitive load of the task. For example,
in the picture description task (S), participants presumably pause turn-internally to
think about what they are describing; whereas, such pauses are less frequent in the
SIT task, where they are asked to read a short sentence they see on screen.

Optimal startSpeech values appear to differ less per cohort type, though do
differ per task type. The amount of speech time necessary to trigger the beginning
of a VAD event is lowest for both the open ended question task OQ (50 - 90 ms)
and for the DDK task (70 - 90 ms). As Figure 3b shows, each of these tasks have
more speech events of very short duration than the other tasks. In the DDK task,
each participant is asked to repeat the three-syllable nonsense word /pAtAkA/ over
and over again until they run out of breath. There is a rapidity to this task that is
unlike natural speech and the produced vowels are often very short. For the OQ
task, there are many very short “no” responses to the question. The optimal VAD
configuration settings thus require a short startSpeech time for these tasks to pick

Parameter OQ A DDK SIT R S
C B C B C B C B C B C B

endSilence 1100 2500 1800 1100 1800 1900 1000 2000 1800 2300 2200 2500
startSpeech 50 90 190 190 90 70 150 150 190 150 190 50

Table 2: Optimal endSilence and startSpeech values per task and cohort:
C=control; B=bulbar.
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up these speech events; whereas, the VAD in other tasks would consider such a short
burst of energy as non-speech noise.

No clear patterns emerged for the energy-based configuration parameters: min-
Signal, threshold, adjustment.

6.4 Cross Validation

In order to see how well we might expect an optimized VAD configuration value
to perform on new and unseen data, we ran several cross validation simulations.
Figure 7 show the results. Sub-corpora were selected according to different criteria:
the entire corpus (ALL), all the turns for each cohort (CONTROL and BULBAR),
and just the turns for each task with the cohorts combined (e.g., OQ). Then, the
sessions were randomly divided into 5 partitions and all of the turns associated with
that session were added to the appropriate partition. In this way, no data from a
single session was ever in more than one partition. In cases where sessions from
multiple cohorts were present in the sub-corpus, we stratified sampling by ensuring
that each partition contained the same proportion of sessions from each cohort equal
to their distribution in the overall corpus. In each iteration, the optimal configuration
was found from the four partitions comprising the training set. This configuration
was then applied to the test partition. Each fold comprised the following number
of turns per sub-corpus displayed: ALL, 336; CONTROL, 181; BULBAR, 104;
and each task type fold contained roughly 30 turns except for SIT which contained
183 turns because there were six such tasks in each session. We ran ANOVA and
pairwise t-tests for the metrics of each iteration of the training/test sets and found a
significant difference only for DCF on the DDK task (p = 0.0389). In other words,
performance on unseen test data closely mirrors performance on the training data for
all speaking task types except DDK. This gives us confidence in the generalizability
and robustness of our results.

(a) Detection Cost Function. (b) Interruption Rate.

Fig. 7: Mean and standard deviation results of 5-fold cross validation.
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7 Summary

In the assessment of dysarthria using spoken conversational AI, correct VAD perfor-
mance is of paramount importance because accurate participant assessment relies on
accurately capturing participant speech for each task. We found that optimal VAD
configuration differed between dysarthric and control speakers. Most notably, the
optimal amount of silence to wait before triggering the end of a turn was longer
for the participants in the bulbar cohort. This finding corresponds to the longer and
more variable pauses that dysarthric speakers produce, as identified in previously
cited studies as well as in our own analysis. We found that paying attention to task
type was also important. In most standardized assessments of dysarthric speech, the
tasks are designed to elicit speech in a wide variety of contexts, often very unlike
speech produced in natural conversation. Most notable examples of this are the Oral
Diadochokinesis Alternating Motion Rate (DDK) and the long sustained vowel (A)
tasks. For the DDK and A tasks, it was found that a shorter duration for triggering
the start of speech was optimal; whereas, in tasks that are designed to introduce high
cognitive load, such as the picture description task (S), waiting for a pause of up to
two and a half seconds before ending the end of turn was optimal. In the end, we
found that optimizing VAD parameters over both speaker and task type yielded the
best VAD performance, as measured by the DCF. Furthermore, the results of cross
validation give us confidence that the findings are not due to over-fitting, but rather
will generalize to unseen data.

There are two main areas we intend to explore in the future. The first is to at-
tempt to modify the DCF equation. In our findings there were a few cases in which
the lowest DCF score did not produce the lowest interruption rate (IR). We believe
this is an artifact of our data. Since we obtained our data from a deployed dialog sys-
tem, when an interruption by NEMSI occurs, the participant stops speaking shortly
after being interrupted. Though this does result in some false negative time, it is
often a very short amount of time and the user might in fact have spoken much
longer had they not been interrupted. We expect that we can alter the weighting of
false negative and false positive time, or even explicitly add an interruption penalty,
that would produce a modified DCF that would also always optimize for interrup-
tion rate. The second area of future research will be to explore how these findings
generalize when using different VAD algorithms; in particular, those that take into
account information beyond just the signal energy—rich information contained in
the time-varying frequency spectrum, for instance—for determining whether an au-
dio frame is speech or not. We hypothesize that our findings on pause durations will
hold, though we hope to discover differences in voice and spectral quality between
cohorts as well.
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