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Abstract— We present a cloud-based multimodal dialogue
platform for the remote assessment and monitoring of speech,
facial and fine motor function in Parkinson’s Disease (PD) at
scale, along with a preliminary investigation of the efficacy of
the various metrics automatically extracted by the platform.
22 healthy controls and 38 people with Parkinson’s Disease
(pPD) were instructed to complete four interactive sessions,
spaced a week apart, on the platform. Each session involved a
battery of tasks designed to elicit speech, facial movements and
finger movements. We find that speech, facial kinematic and
finger movement dexterity metrics show statistically significant
differences between controls and pPD. We further investigate
the sensitivity, specificity, reliability and generalisability of these
metrics. Our results offer encouraging evidence for the utility
of automatically-extracted audiovisual analytics in remote mon-
itoring of PD and other movement disorders.

I. INTRODUCTION

The need for remote monitoring to support patients, care-
givers, and healthcare professionals in their collaborative
efforts for better care has never been greater, a situation
which has been brought into more acute focus by the SARS-
COV-2 pandemic [1]. Indeed, the majority of people with
Parkinson’s Disease (pPD) have limited access to specialists
[2] making outcome improvements through remote patient
monitoring (RPM) particularly relevant for PD. Up to 90%
of pPD exhibit dysarthria during the course of their disease
[3]. Some characteristics of Parkinsonian or hypokinetic
dysarthria are monopitch and monoloudness, reduced stress
and breathiness [4], thus making acoustic and articulatory
parameters related to speech production important indicators
of disease progression in PD [5]. Indeed, previous work
has demonstrated that speech acoustics [6], [7], articulation
[8], [9], orofacial kinematics [10] and motor function [11]
can prove to be important biomarkers of PD [12]. Speech,
breathing and non-speech oral exercise based therapies have
shown encouraging improvements in speech production with
a direct impact on intelligibility and an indirect impact on
activities of daily living [13]. However, such therapies may
be intensive and often involve multiple visits to the clinic,
precluding a vast chunk of the population from seeking
specialist care. Self-driven conversational RPM that extracts
speech acoustic and articulatory features automatically has
the potential to revolutionise health care for pPD. Moreover,
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motor symptoms in PD are traditionally assessed in the
clinic through tests like finger tapping [14]. Most existing
contactless RPM systems that assess dexterity of finger
movements are based on smartphone apps in which a variant
of the finger tapping task is used by asking the user to
alternately tap buttons on the screen, see for instance [15].
While automatic evaluation of finger tapping from videos
has shown promising results [16], [17], these studies were
so far conducted with on-site video recordings in controlled
conditions. Utilising remotely-recorded video data from a
participant’s webcam combines the benefits of cost-effective,
frequent remote monitoring with the ability for clinicians to
review the performance (in addition to the scalable automatic
processing).

In this paper, we present Tina, a virtual dialogue agent
that conducts on-demand automated interviews through a
HIPAA-compliant, secure screening portal over an internet
browser. During the conversation, Tina engages participants
in a mixture of structured speaking exercises and open-ended
questions to elicit speech, facial and fine motor behaviour
(the latter using novel finger-tapping exercises designed to
test limb motor function). We leverage the rich multimodal
data collected to answer the following research questions
regarding the feasibility of multimodal dialogue technology
for remote assessment and monitoring of PD:

1) Which metrics show significant differences between
pPD and healthy controls? How reliable are these met-
rics?

2) What is the unweighted average recall (UAR) for clas-
sifying pPD from controls? How generalisable are these
findings?

3) What is the relative performance of speech, facial
and finger-tapping metrics in distinguishing pPD from
healthy controls?

II. SYSTEM

The virtual agent Tina introduced above is powered by
NEMSI [18] - the Neurological and Mental health Screening
Instrument, which is a cloud-based multimodal dialogue
system designed to conduct automated screening interviews
that elicit evidence for detection and progress monitoring of
neurological and mental health. During each call, analytics
modules automatically extract a variety of audio (e.g., speak-
ing rate, duration), facial (e.g., range and speed of movement



of lips and jaw) as well as finger-tapping metrics in real time
and store them in a database together with meta information
of the interaction, like captured participant responses, call
duration, or completion status [19]. This information can
be accessed by clinicians during and after the interaction
through an easy-to-use dashboard, which provides a high-
level overview of the interaction and a detailed breakdown
of individual interaction turns.

III. DATA

All participants were recruited and informed consent
was obtained by the Purdue Motor Speech Lab at Purdue
University. This study was approved by Purdue’s Institu-
tional Review Board. The Montreal Cognitive Assessment
(MoCA) [20] was administered to every participant to test
for cognitive impairment. Data from 60 participants (see
Table 1) collected between November 2020 and January
2022 were used in this study. Although each participant
was asked to complete four sessions, spaced a week apart,
some participants did more than four sessions. This resulted
in a total of 249 sessions. The finger-tapping exercise was
introduced in August 2021 and data are available for only 19
participants. A notable highlight of this data collection is that
even though we recruited participants from diverse urban,
suburban and rural regions, including some with occasional
connectivity issues, we observed a ∼ 92% completion rate
among our elderly participant pool who reported a successful
and favourable interaction with the system.

TABLE I: Participant Demographics: Age, MoCA scores
and years since diagnosis are presented as: median; mean
(standard deviation).

Group Controls pPD
Sex 18F / 4M 19F / 19M
Age (years) 65; 63.46 (11.08) 71; 67.48 (9.30)
MoCA score 28; 27.55 (1.92) 27; 26.06 (3.63)
Years since diagnosis n/a 5; 7.89 (6.16)
Region 2 urban, 15 suburban, 5 rural 6 urban, 23 suburban, 9 rural
Session status
Completed successfully 87 142
User restarted 3 6
User hung up early 0 10
Recoverable system error 0 1

The conversational flow elicited speech samples of the
following types from participants: (a) sustained vowel phona-
tion (steady / with up-or-down pitch glide), (b) read speech,
(c) story retells and (d) spontaneous speech. For (b) read
speech, participants were asked to read speech intelligibility
test (SIT) sentences, sentences that elicited prosodic variation
(Prosody) and a reading passage (Rainbow Passage). For (d),
participants were asked to speak about any topic of their
choice with a few topics listed on the screen.

For the finger tapping exercises, participants were in-
structed to hold their hand up to the camera and perform
a tapping motion for ten seconds. During the exercise,
anatomical landmarks of the participant’s hand were derived
from the recorded image frames. The coordinates of the tip
of the index finger and tip of the thumb were recorded to a
database for subsequent calculation of metrics (see Figure

1). The finger tapping assessment comprised three tasks
which differed based on the instructed goal of the tap, i.e.
participants were instructed to make the tapping movement
as (1) wide, (2) fast, or (3) both wide and fast as possible.
They were then asked to repeat the same three tasks with
the other hand.

Fig. 1: Illustration of the 21 obtained and 2 used (shown in
red) hand landmarks for the two key points of interest, i.e.
fingers open and fingers closed.

IV. METHODS

A. Extraction of metrics

All acoustic metrics were automatically extracted using
Praat [21] and the Montreal Forced Aligner [22] (to extract
timing agreement of read sentences relative to a canonical
pronunciation). See Table II for a complete list.

TABLE II: Extracted acoustic metrics. F0 = fundamental
frequency, F1/F2/F3 = first three formant frequencies, PPT =
percent pause time, CPP = cepstral peak prominence, HNR
= harmonics-to-noise ratio, WPM = words per minute,
MFA = Montreal Forced Aligner.

Speech type Collected metrics
Vowel Min, Max, Mean F0 (Hz), jitter (%), shimmer (%), HNR (dB), articu-

lation duration (sec), intensity (dB), F1 (Hz), F2 (Hz), F3(Hz)
Prosody and
Story retells

Min, Max, Mean F0 (Hz), jitter (%), shimmer (%), HNR (dB), CPP
(dB), intensity (dB), PPT (%), speaking duration (sec)

Read speech Min, Max, Mean F0 (Hz), jitter (%), shimmer (%), HNR (dB), CPP (dB),
intensity (dB), PPT (%), MFA timing agreement (%), speaking duration
(sec), speaking rate (WPM), articulation duration (sec), articulation rate
(WPM)

Spontaneous
Speech

Min, Max, Mean F0 (Hz), jitter (%), shimmer (%), HNR (dB), CPP
(dB), intensity (dB), PPT (%), speaking and articulation duration (sec)

Facial metrics were calculated for each utterance in three
steps: (i) face detection using the face detector in the dnn
module of OpenCV (https://opencv.org/) , which uses
a Single Shot Detector architecture to determine the (x, y)-
coordinates of one or more faces for every input frame,
(ii) facial landmark extraction using the Dlib facial landmark
detector, which uses an ensemble of regression trees [23] to
extract 68 facial landmarks, and (iii) facial metrics calcu-
lation, which uses 20 facial landmarks to compute metrics
like the speed and acceleration of articulators (jaw, lower
lip), surface area of the mouth, etc. See [24] for details.

Metric extraction for the finger tapping exercise is per-
formed in three steps: (1) hand detection, (2) hand landmark
extraction, and (3) hand metrics calculation. For hand and
hand landmarks detection MediaPipe Hands [25] is used,
which is a hand tracking pipeline implemented via Medi-
aPipe [26]. MediaPipe Hands first employs a palm detector
that outputs a cropped hand bounding box, which is then
provided as input to the hand landmarks detection model,



TABLE III: Extracted finger-tapping metrics.

Metrics Description
velocity / Maximum ( max) and difference between

acceleration first half and second half ( diff)
Jitter Cycle-to-cycle variation of time period

Shimmer Cycle-to-cycle variation of amplitude

which in turn returns 21 landmarks as illustrated by Figure 1.
The positions of the tips of the thumb and index finger are
then used to calculate the metrics in Table III.

V. STATISTICAL ANALYSES & RESULTS

All metrics were z-scored by sex to normalize for sex-
specific differences. Wherever applicable, metrics were av-
eraged across tasks (except speaking duration and articula-
tion duration). For every acoustic, facial and finger-tapping
metric, we performed a non-parametric Kruskal-Wallis test
to identify the metrics which showed significant differences
between pPD and controls at α = 0.05. Figure 2 shows all
the metrics that can distinguish between pPD and controls
along with effect sizes, measured as Glass’ ∆. In terms
of acoustic metrics, pPD exhibited a higher articulation
rate, greater articulation intensity, shorter duration of speech
across various tasks and lesser agreement with the expected
duration in the SIT task than controls. pPD also showed
lower speed and acceleration of the jaw and lower lip, smaller
lip aperture and lesser surface area of the mouth during
speaking. Acceleration during left hand finger-tapping tasks
was lower in pPD than in controls.

We calculated the test-retest reliability coefficient of these
metrics by taking their average absolute Pearson’s correla-
tion coefficient between all pairs of sessions (displayed in
parentheses in Figure 2). Acoustic metrics showed better test-
retest reliability than facial metrics. Finger-tapping metrics
that showed statistically significant differences between the
two groups displayed large session-to-session variability.

Additionally, to perform a binary classification between
the two cohorts, we conducted a 5-fold cross-validation
with a random forest classifier. This cross-validation was
performed using (a) acoustic metrics alone, (b) facial metrics
alone, (c) finger-tapping metrics alone1. Receiver operating
characteristics (ROC) curves for these classification analyses
can be seen in Figure 3. The mean unweighted average recall
(UAR) across 5 cross-validation folds when only acoustic
metrics were included stood at 0.65 ± 0.16 (Figure 3a),
which is above chance. When facial metrics alone were
considered (Figure 3b), the average UAR was 0.54 ± 0.07.
When finger-tapping metrics alone were included (Figure
3c), average UAR was 0.53 ± 0.15.

VI. DISCUSSION

This work provides preliminary evidence on the feasibility
of a multimodal, dialogue-based remote patient monitoring
method to track Parkinson’s Disease and other movement

1We also investigated fusion of modalities, but this did not improve
performance, potentially because of the smaller sample size for sessions
that had metrics from all 3 modalities available.

Fig. 2: Effect sizes of acoustic, facial and finger-tapping
metrics that show statistically significant differences between
controls and pPD at α = 0.05. Test-retest reliability measured
as the average Pearson’s correlation coefficient across all
pairs of sessions reported in parentheses.

disorders. The high completion rate of sessions (92%) as seen
in Table I is an encouraging indicator of RPM technology
adoption by elderly populations. This speaks to the utility of
such RPM technology, even in rural locations with occasional
internet connectivity issues.

We found that speech acoustic, facial kinematic and finger
tapping metrics can be used to distinguish between pPD and
controls. In particular, pPD had a higher articulation rate;
abnormalities in articulation and speaking rate in PD are
well-documented [27]. pPD also showed greater articulatory
intensity, an observation which could be influenced by the
distance of the participants from their microphones. Notably,
pPD spoke for a shorter duration in most tasks. Facial kine-
matic metrics like the speed and acceleration of the lower lip
and jaw also showed differences between pPD and controls.
During finger tapping tasks using the left hand, pPD showed
lower acceleration, perhaps indicative of motor rigidity. In
general, speech acoustic metrics demonstrated better test-
retest reliability from session to session than facial or finger-
tapping metrics. Acoustic metrics performed well in the
classification experiment in distinguishing between the two
groups. Facial metrics performed relatively worse, but this
could be due to lower reliability of these features arising from
low quality video connections. Finger tapping metrics also
did not perform as well as speech metrics, perhaps because
of the smaller sample size. It is for this reason that fusion
of all modalities was not effective for this limited sample.
Additionally, information about participants’ handedness was
not available for this analysis. Future investigations with
larger samples will also take handedness into consideration
to better understand finger tapping behaviour in pPD.



(a) All acoustic metrics (N = 203) (b) All facial metrics (N = 249) (c) All finger-tapping metrics (N = 46)

Fig. 3: ROC curves displaying the performance of binary classification with 5-fold cross-validation.
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